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Integration of Information Management System, Workflow 
and Computational Tools Enabling Multiscale Modeling 

Within an ICME Paradigm   
 

Steven M. Arnold* , Samuel C. Maphey†,  
NASA Glenn Research Center, Cleveland, OH 44135 

With the increased emphasis on reducing the cost and time to market of new 
materials, the need for analytical tools that enable the virtual design and 
optimization of materials throughout their processing - internal structure – 
property - performance envelope, along with the capturing and storing of the 
associated material and model information across its lifecycle, has become 
critical. This need is also fueled by the demands for higher efficiency in material 
testing; consistency, quality and traceability of data; product design; 
engineering analysis; as well as control of access to proprietary or sensitive 
information. Fortunately, material information management systems and 
physics-based multiscale modeling methods have kept pace with the growing 
user demands. Herein, recent efforts to develop a set of Python functions that 
exchange information between NASA GRC’s Integrated multiscale 
Micromechanics Analysis Code (ImMAC) software toolset and its Integrated 
Computational Materials Engineering (ICME), Granta MI® database schema 
is presented.  The goal is to enable seamless coupling between both test data 
and simulation data, which is captured and tracked automatically within 
Granta MI®, with full model pedigree information.  These tools, and this type 
of linkage, are foundational to realizing the full potential of ICME, in which 
materials processing, microstructure, properties, and performance are coupled 
to enable application-driven design and optimization of materials and 
structures. 

I. Introduction  
ith the increased emphasis on reducing cost and time to market of new materials, ICME 
(Integrated Computational Materials Engineering) has become a fast growing discipline 

within materials science and engineering. The vision of ICME is compelling in many respects, not 
only for the value added in reducing time to market for new products with advanced, tailored 
materials, but also for enhanced efficiency and performance of these materials. Although the 
challenges and barriers (both technical and cultural) are formidable, substantial cost, schedule, and 
technical benefits can result from broad development, implementation, and validation of ICME 
principles[1]. ICME is an integrated approach to the design of products, and the materials that 
comprise them, by linking material and structural models at multiple time and length scales.  
 A key ingredient is the linkage with manufacturing processes, which produce internal material 
structures, and in turn influence material properties and allowables, enabling tailoring (engineering) 
of materials to specific industrial applications.  Figure 1 illustrates the interconnection of these 
scales and their cause/effect relationships, e.g., processing conditions produce a particular 
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microstructure from which properties are obtained, which then dictate a specific structural 
performance. Note that the evolution of elliptical line types (i.e., dotted to dashed to solid line) are 
purposely included to imply the level of maturity/understanding (from immature, to semi-mature, 
to mature, respectively) of modeling at each level of scale (both temporal and geometric). 
Furthermore, the figure illustrates the difference between two non-exclusive viewpoints; that is 
designing “with-the-material” (structural analyst viewpoint) versus designing “the material” (a 
materials scientist viewpoint). It is also apparent that the fundamental linkage between these two 
viewpoints is ultimately the associated constitutive model(s) for a particular material.   It is critical 
to understand the input and output at each scale in order to determine the appropriate “handshaking” 
between scales and the meaningful properties that are ultimately required by a structural analyst.  
   
 

 
Figure 1 Description of associated length scale dependence and modeling methods in the context 

of ICME. 
 
While there is a clear indication that ICME is growing, utilization of ICME in the daily work 

of researchers and engineers is still lacking.  Two key contributing factors, since ICME is an 
inherently data intensive activity, are the lack of a robust information management system and the 
lack of a digital storage culture within most organizations. This stems from the fact that on the 
surface, a materials properties database may seem simply like a fancy means of storing, retrieving 
and distributing materials data; something akin to an electronic file cabinet. However, as discussed 
by Marsden et al.2 and Arnold et al.[3], an effective ICME materials database (e.g., one in which 
experimental and computational mechanics are fully coupled) must allow the data inside the 
database to be easily accessible by analysis tools and allow the results from analyses to be read 
back into the database and stored with all of the associated metadata, while keeping track of 
associations across the full range of length scales.  

This requirement greatly increases the need for data/metadata and contextual linkage so that 
knowledge can be both captured and reused. For example, the variety and complexity of modern 
materials, and their applications, necessitate complicated, and often extensive, materials testing. As 
for composite materials, large volumes of test data on various forms of the composites themselves, 
as well as individual constituents’ thermal and mechanical behavior, are often required. Given a 
micromechanics based analysis approach, it is typical to require that data for each constituent be 
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reliably and conveniently traced back from the final products through their processing steps to the 
original raw materials. A second example is the need to provide adequate data to support 
increasingly sophisticated nonlinear, anisotropic and multi-scale engineering analyses. Here again, 
instead of storing a simple set of reduced, point-wise data, like elastic modulus and yield strength, 
the entire response (e.g., stress-strain, creep, relaxation, etc.) curves may be required. Collating, 
storing, processing, interacting with, and finally applying such data and metadata requires advanced 
dynamic information systems, enabling management of changing proprietary data alongside 
reference data collections, while ensuring consistency, quality, applicability and traceability. 

Prior publications [3-6] discussed the data scheme, best practices, and informatics required to 
establish a robust, 21st century, information management system for capturing and analyzing 
material information.  The goal of the information management system is to enable: 1) generalized 
constitutive modeling and 2) data-mining to establish microstructure/property/failure relationships 
for monolithic and composite materials. The proposed schema/ requirements for ICME were first 
demonstrated using a turbine disk Ni-based superalloy, in Arnold et al.[3]. Then, Arnold et al.[5,6] 
argued the importance of integrating both virtual (computationally based) and experimental data, 
over the entire material data life cycle and at various length scales, in the same information 
management system was essential for ICME to become a reality. The proposed ICME schema, 
which has been adopted by the MDMC‡, is given in Figure 2.  The specifics of the schema (i.e., 
required attributes) and the format (e.g., attribute type and record layout) for best storing such 
information were discussed in detail in Arnold et al.[5,6]  for storing monolithic and composite 
material information at the coupon level. In the case of monolithic materials (e.g., fiber and matrix), 
three tables and their associated attributes were defined to enable the complete data life cycle to be 
handled, these are the: Deformation Table, Damage-Life Table, and Software Tools Table, see 
Figure 2.  Whereas, in the case of composite materials one must think more broadly as multiple 
length scales can be involved depending upon the approach taken (i.e., macromechanics or 
micromechanics) to define the material's “constitutive model”. Consequently, the additional meso 
or macro scale above the constituent scale (e.g., that associated with monolithic material) 
necessitated the introduction of a fourth table, the Composite Table.  Clearly, extension to other 
scales (e.g., atomistic, processing, microstructure modeling, structural) may require either the 
addition of new tables with appropriate attributes to the Model pedigree group within Figure 2 (e.g., 
Process Model Table) or new scale specific attributes to represent each new scale considered.  

Figure 3 illustrates the interaction between experimental data and virtual data (data resulting 
from simulation tools) in that some experimental processing data (A) serves as input to a process 
model which in turn outputs some microstructural feature (W), which is stored in the database. This 
virtual microstructure data is then combined with measured microstructural data (B) and provided 
as input to a micromechanics and/or statistical mechanics analysis package, which then generates 
material property data (X, Y), which again is stored in the database. This property data (X,Y) is 
then subject to experimental validation (E,F), and also used in some continuum level analysis 
package (e.g., finite element analysis (FEA)) to assess some performance criteria (e.g., fatigue life, 

                                                 
‡ The Material Data Management Consortium (MDMC) is a group of aerospace and energy sector 
organizations (both industrial and governmental) that have joined forces to develop best practices 
and associated software tools to integrate material and structural information technology with the 
realities of practical product design and advanced research. This group was established in 2002 
through collaboration between ASM International, NASA Glenn Research Center and Granta 
Design Limited[7], see www.mdmc.net[8]. 
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creep rupture, buckling load) Z; which is again stored in the database. Clearly, the present schema 
(with its assembly of model pedigree tables) not only allows model information and model 
parameters to be stored in a location that is easily accessible by FEA or other analysis codes through 
some type of interface software (e.g., Granta Material Gateway®), but also stores any associated 
simulation data necessary to assist in the evaluation, verification and validation of model output 
and certification of toolsets at multiple length scales. Also, once all of the input/output protocols 
are established, it can enable the seamless integration of these toolsets with optimization (e.g., 
OpenMDAO[9]) algorithms that will provide the final linkage of processing to performance 
criteria—thus realizing true ICME. 
 
 

 
 

 
 
 
 
 
 
 
 
 
 

 
 

 
 
 

 

  
Figure 3  ICME infrastructure for housing modeling and testing information.  Private 

communications with Dr. David Cebon, Cambridge University and Granta Design Ltd., 
2013. 

Figure 2 NASA Glenn’s Schema Modified to Incorporate Virtual data to enable 
ICME. 
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In a prior publication[10] it was demonstrated how the exchange of input/output information 
between Granta MI and NASA GRC’s MAC/GMC code (illustrated in Figure 3) could be 
accomplished via web application and workflow engine. The web applications execute the 
requested MAC/GMC simulations, and the results (representing the composite at the macro scale), 
along with all metadata and model pedigree information, are then captured and stored in the 
database. On the micro scale, composite constituent materials from the Granta MI database are 
provided as input to MAC/GMC.  Thus, the linkage exercise validated the schema on two levels of 
scale.  In this paper, an alternative workflow engine (i.e. MATLAB) and associated Python 
application programing interface (API), which enable linkage of third party model simulation 
software (with full model pedigree storage) to the information management system, will be 
discussed.  NASA GRC’s MAC/GMC micromechanics analysis software will once again serve as 
the third-party modeling software, with the linkage to the Granta MI information management 
system being accomplished via the establishment of a number of specialized Python input/output 
applications. The micromechanics model, along with the newly developed workflow and Python, 
are described below. 

II. Micromechanics of Composite Materials and Structures 
In its broadest context, a composite is anything comprised of two or more entities with a 

recognizable interface (i.e., distinct internal boundaries) between them. If these internal 
boundaries are ignored, continuum mechanics can be used to model composite materials as 
pseudo-homogenous, anisotropic materials, with directionally dependent "effective," 
"homogenized," or "smeared" material properties. Micromechanics, on the other hand, attempts to 
account for the internal boundaries within a composite material and capture the effects of the 
composite's internal arrangement. In micromechanics, the individual materials (typically referred 
to as constituents or phases) that make up a composite are each treated as continua via continuum 
mechanics models, with their individual properties and arrangement dictating the overall behavior 
of the composite material.  Over the past two decades NASA Glenn Research Center has been 
developing the ImMAC suite of tools for analyzing continuous, discontinuous, woven, and smart 
(piezo-electro-magnetic) composite materials and/or structures composed of such materials. 
MAC/GMC (a comprehensive and versatile stand-alone micromechanics analysis computer 
code), HyperMAC (the coupling of MAC/GMC micromechanics with the commercial structural 
sizing software known as HyperSizer[11]), MSGMC (the recursive coupling of micromechanics 
with micromechanics, for woven composites), and FEAMAC (the coupling of MAC/GMC 
micromechanics with the commercial finite element code, Abaqus[12]) make up this suite. At the 
core of these various tools is the well-known method of cells family of micromechanics theories 
(e.g., method of cells, Generalized Method of Cells, and High-Fidelity Generalized Method of 
Cells) developed by Aboudi and co-workers [13].   

These methods provide semi-closed form solutions for determining global anisotropic 
composite properties in terms of the constituent material properties and arrangement, while also 
providing the full three dimensional stresses and strains in each of the constituent subcells. For a 
detailed, comprehensive discussion on modeling of composite materials, the reader is referred to 
the book entitled Micromechanics of Composite Materials: A Generalized Multiscale Analysis 
Approach[13].  Micromechanics based analysis lends itself to ICME in that it can link the 
processing and microstructure of the material directly to the resulting properties and performance 
of the material/structure, thereby enabling the engineer to not only “design-with-the” material but 
also concurrently “design-the” material.  Consequently, by developing a database schema capable 
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of handling a micromechanics approach enables demonstration of an ICME capable (multiscale) 
database framework for composite materials.  

 

A. The Generalized Method of Cells (GMC) 
The Generalized Method of Cells (GMC) micromechanics theory assumes that a continuously 

reinforced composite microstructure can be represented as a collection of periodic repeating unit 
cells (RUCs) containing an arbitrary number of constituents, as shown in Figure 4. The RUC 
(indicated by a dashed line in Figure 4) is then discretized into  x  rectangular subcells (in 
the case of doubly periodic GMC), as exhibited in Figure 5. Note, triply-periodic microstructures 
(e.g., particulate reinforced or 3D woven composites) although not discussed here, can also be 
represented by GMC. Each of these subcells is occupied by one of the constituent materials (e.g., 
SiC Fiber, BN coating, SiC matrix, and Free Si in the case of SiC/SiC composites). The number of 
subcells and the number of materials are completely general. In GMC, a first-order displacement 
field within the subcells is assumed, and displacement and traction continuity conditions are 
enforced in an average, integral sense at the subcell interfaces of the discretized RUC. These 
continuity conditions are used to formulate a set of semi-analytical linear algebraic equations that 
are solved for the local strains in each subcell (βγ) in terms of globally applied strains or stresses. 
Then, local constitutive laws can be utilized to obtain the local stresses in subcell (βγ),  
 

 (1) 

 (2) 

where σ is the stress tensor, C is the stiffness tensor, and ε, εI, and εT are the total, inelastic, and 
thermal strain tensors, respectively,  and  are 6 by Nβ Nγ matrices containing all components 
of the inelastic and thermal strains, respectively, of every subcell (appropriately ordered), A(βγ) is 
the strain concentration tensor, and D(βγ) is the thermo-inelastic strain concentration tensor. Then, 
the generalized constitutive law for the effective, homogenized composite can be formulated as, 
 

 (3) 

where the effective stiffness tensor, , effective inelastic strains, , and effective thermal strains, 
, are given by, 
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(6) 

hβ and lγ are the dimensions of the subcells, h and l are the dimensions of the RUC, and  and  
are the effective (homogenized) stress and strain tensors.  Extensive details regarding this derivation 
can be found in Aboudi et al. (2013)[13].  

 

 
Figure 4 Representation of a doubly-periodic microstructure of a CMC composite material. 

 

 
Figure 5 Discretization of a doubly-periodic RUC. 

 
 The developed ICME database schema is sufficiently general to admit all data associated with a 
micromechanics theory such as GMC.  The present schema the various constitutent constitutive 
model parameters, be they reversible or irreversible, are stored in the individual folders/records 
associated with specific materials and constitutive models, for each material, in the Deformation 
Table. Whereas, the effective composite properties, C*, and effective stress and strain responses, 
denoted by the overbar terms in equations (3, 5 and 6), and associated metadata (e.g., RUC details 
and simulation input file) are stored in the Composite Table. The specific attributes and associated 
data types, as well as the corresponding layout of information for the Deformation Table and 
Composite Table (see Table 1 below) are given in Arnold et. al. [5,6].   
 

B. FEAMAC Multiscale Framework 
 
A key ingredient of ICME is the linkage of the subscale effects to structural performance. As 

such, a synergistic multiscale framework (which executes concurrent multiscaling in time, but 
sequential multiscaling in space[14]) has been constructed to simulate the nonlinear response of 
composite structures by modeling the fiber-matrix architecture as an RUC at the microscale using 
GMC and coupling the microscale to a lamina/laminate level (macroscale) finite element model 
(FEM). The commercial finite element software, Abaqus [12]

, is used as the FEM platform, and the 
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MAC/GMC core micromechanics software[15,16] is used to perform microscale calculations. The 
scales are linked using the FEAMAC software implementation[17], which utilizes various 
Abaqus/Standard user subroutines. A schematic displaying a typical multiscale model using 
FEAMAC is displayed in Figure 6.  The strains at the FEM integration point are applied to the RUC 

 
Table 1 Layout and Attributes for Composite Model Table 

 
 
 

 
Figure 6 Diagram showing coupling of macroscale FEM and microscale GMC models. 
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and the local subcell fields are determined using GMC (this process is referred to as localization). 
If the subcell material behavior is nonlinear, the local stresses and strains are used to calculate the 
local stiffnesses, inelastic strains, thermal strains, and/or state variables via the local constituent 
constitutive laws.  Homogenization of the RUC is then performed to obtain the global stiffnesses, 
inelastic strains, thermal strains, and/or state variables.  The global stresses at the integration point 
are then calculated using these global, homogenized fields, and the effects of any nonlinear subscale 
phenomena are introduced into the macroscale through changes in the integration point stress state 
and stiffness.  The global stresses, material Jacobian, and updated state variables at each FEM 
integration point are then supplied to Abaqus through the user material UMAT subroutine.  For 
complete details on the FEAMAC implementation, the reader is referred to Bednarcyk and 
Arnold[16] and Aboudi et al.[12] 

With the ability to link the GMC micromechanics model, which accounts for processing and 
microstructure while predicting properties (as discussed in the previous section), with a structural 
FEM, which simulates performance, the full range of ICME-related scales depicted in Figure 3 has 
been captured. Note the exact location of the simulation results of the structural analysis (i.e., 
stiffened panel in Figure 6) has yet to be finalized as they could go in a model pedigree table, the 
application table, or in a product life management (PLM) system external to the Granta MI database. 
More specific details regarding layout and associated attributes within the composite and software 
tables are given in the next section. 

III. Workflow and Tools  
 
In Figure 3, the high-level integration of the Granta MI information management system, 

extended to include both real and virtual data, was described. In this section, we will focus on the 
connection components (those represented by the Exporter Data Interface and Importer Data 
Interface in Figure 3) and their interaction with the associated database and computational tools. 
These components are foundational to a new workflow that allows for a user to interact with the 
information management system and other simulation tools associated with various length scales.  
Figure 7 illustrates this new workflow wherein a computational infrastructure (comprised of 
input/output files, workflow engine and various analysis codes operating at different length scales) 
is directly linked to the Granta MI information management system via export and import data 
interfaces (herein written in Python). In Figure 7, the exporter data interface is represented as Export 
Script, the importer data interface as Import Script and the computational tools highlighted within 
the grey box. The specific computational tools, as shown in Figure 3, can involve process models 
(which reflect process-microstructure relationships), micromechanics tools such as MAC/GMC as 
described in section 2 (which reflect microstructure-property relationships), and finite element 
analysis (which reflect property-performance relationships). The developed Python scripts were 
designed and implemented to enable interaction with or insertion within any of the referenced 
computational methods or workflow engines (e.g. MATLAB, Isight, etc.). The separation of 
workflow engine and analysis code, in Figure 7, is important as it enables integration of third party 
analysis software tools, in that specific input/output requirements can be isolated to substitutable 
modules of code, while not duplicating common functions between toolsets.  The workflow engine 
drives the execution of a given problem, that is, the interaction between the executable third-party 
software package, in this case, MAC/GMC and Granta MI.  With the information flow between the 
computational infrastructure and Granta MI occurring through its already established Service Layer 
via the Python input/output scripts, see Figure 8.  
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Figure 8, illustrates the application programing interface (API) developed by Granta Design, 

wherein multiple SDKs (software development kits) have been developed. Specifically, a linkage 
between the Granta MI database using C++ libraries to create Python classes that allow direct access 
to the data stored in Granta MI (MI Scripting Toolkit). This is represented as the Granta MI service 
Layer and Python MI Scripting Toolkit and will be the foundation to all of the following tools 
discussed herein, wherein the workflow shown in Figure 7 will be described in greater detail 
subsequently.   

 

 
Figure 7 Schematic describing the information flow between a user, workflow engine, and the MI 

database. 
 

 
Figure 8 Diagram relating the developed code to the backend developed by Granta Design 

 
The export script, discussed more in part IV, was developed as a graphical user interface (GUI) 

and API function calls, whereas the import script, discussed in more detail in part V, as merely an 
API. The decision to separate these in terms of their fundamental nature harkens back to the nature 
of the workflow in Figure 3.  Wherein for a micromechanics based analysis, a user must be able to 
access/extract constituent materials property data from the Granta database with ease and 
simplicity. This typically occurs at the beginning of a given workflow in order to create an input 
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file that can be read by a selected analysis code. This input file will be created (based on a reference 
input file) with the appropriate model parameters and addition of unique MI identifiers, associated 
with the selected materials from the database itself. These identifiers are fundamental to the ICME 
infrastructure as they allow for full traceability and linking of materials at various length scales. 
Consequently, the use of a graphical interface eases the interaction between a user and MI database 
as they can simply search for a given material and retrieve its associated model parameters (e.g., 
thermoelastic properties). Furthermore, the decision to build numerous specific API function calls 
to enable importing of simulation results occurring at different points in the workflow (depending 
upon the computational tools being employed) was made to assist the analyst. By utilizing a 
workflow engine to drive the process it is much easier to create functions that facilitate the 
importing of results (e.g., effective composite properties and/or response curves) which arise from 
a given set of simulations (e.g., Monte Carlo study involving the influence of random 
microstructures).   

To illustrate the above process, we will examine the effect of random microstructure on the 
response of a graphite-epoxy composite system. For instance, 5 graphite-epoxy composites samples 
are analyzed by changing their RUC (to simulate various random microstructures), simulating their 
response and then comparing the resulting stress-strain response including failure of each 
composite. To accomplish this example, the workflow engine used will be MATLAB, the 
computational tool MAC/GMC, and the two input/output interfaces based on the Python API. One 
of the key advantages to developing the exporter and importer using Python is its expansive 
compatibility with other scientific programming languages. Meaning that almost any workflow 
engine chosen will be able to call the designed API (specific Python functions) without the need 
for development of multiple APIs in multiple languages. It is also important to note that this 
workflow is not limited by the chosen workflow engine or computational tools. In the present 
example, MATLAB is taken to represent our workflow engine, but as stated previously any 
language/code that can interact with Python could be similarly supported. For example, in the 
future, extension to Simulia’s Isight workflow engine will be explored.  In addition, while the 
chosen computational tool herein will focus on MAC/GMC, this is not necessary as any other 
computational tool could be interfaced as well, with minimal effort. To conclude, the essence of 
this workflow is to link length scales to create a pedigree of data that can be traversed by examining 
the relationships between a composite and its constituent material properties.  

IV. Exporter Data Interface  
 

    To begin, the first aspect of our new workflow involves retrieving materials from Granta MI 
using a graphical user interface. This user interface was developed by building on top of the Python 
Scripting Toolkit provided by Granta MI and was built around the notion that a user’s goal is to 
obtain constituent constitutive model parameters. This will involve the use of the deformation 
models table shown in Figure 9a; see Table 2 in Arnold et al. (2014)[5]. Given our focus on 
extracting materials data, the user is provided with two options that are shown in Figure 9b. They 
can either search through the database manually by navigating down the folders and subfolders to 
find a material or search by providing names of materials to the search bar. In our case, given a 
graphite-epoxy composite system, we will search for Graphite Fiber and Epoxy Matrix constituent 
properties. Granta’s SDK gives the necessary functionality to provide the developed user interface 
with the necessary materials so that a user can quickly extract their material data. Along these lines 
the GUI, as designed, provides a user with a brief overview of the material they have selected, 
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describing the material class along with the deformation or damage model where applicable (see 
Figure 10). This is all in the name of retrieving real (experimentally obtained) material property 
data to build up a set of constituent representations that will be used to simulate the composite 
material. As the goal of the system is to create an information management scheme that provides 
full traceability, the constituent data extracted from Granta MI is also marked with a unique 
identifier that will reference the specific material record that it was extracted from. Denoted in 
Figure 11 as Record GUID, this data will provide the system with the ability to trace back from a 
composite system to its constituent materials. Figure 11 also illustrates how the model parameter 
data has been formatted to be consistent with the format required by the MAC/GMC software, since 
the goal is to perform micromechanics-based simulations. So, while this data has been extracted 
and formatted to fit this particular model, it can easily be changed to fit a different analysis code.  
 

a)   

 
b) 

Figure 9   The Models: Deformation table here shown in Granta MI (a) and the developed User 
Interface (b).   



 
 13 

 
 

Figure 10 Selecting the material gives a brief overview of the material type and allows a user to 
generate a model. 

 

 
Figure 11 Material property data formatted in such a way as to fit MAC/GMC software. 

     
 
    To further our process and complete the simulation input data retrieval, a user will select a file 
that they want to use as their reference for running simulations. In MAC/GMC this is referred to as 
an input deck and is represented by the file we select, shown in Figure 12. This file (RefFile.mac) 
represents our original file which contains the necessary information to run a simulation using the 
computational tool (MAC/GMC). Here, all of the necessary information for our example problem 
regarding constituent behavior, the geometry of an RUC, failure criteria, and requested output (e.g., 
stress strain plot data) are defined. This file should, for the most part, retain its original structure 
except for the addition of the new constituent model parameters that the user has just created. These 
model parameters will replace the necessary keyword subsection in the MAC/GMC reference file 
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termed *CONSTITUENT with the new constituent data. Figure 13 shows how a user has the ability 
to look at these two files to confirm their accuracy and determine if the MAC/GMC edited file is 
correct. If it is, they simply save the file to the correct directory and if not, they can remove the 
constituent materials and select new materials to build their model. 
    This concludes the first step in our new workflow and has accomplished two objectives. A user 
has retrieved the model parameters for a constituent constitutive model representing the fiber 
(graphite) and matrix(epoxy) constituent materials that will be used to simulate the composite 
material behavior via MAC/GMC.  As such, the original reference file’s *CONSTITUENT section 
is updated with this new information along with the associated unique identifiers for each material 
that comprises the model. This is done to provide Granta with the necessary linkages that will allow 
for traceability in the input dataset and fully implement the ICME methodology by linking a 
composite material to its comprised constituents.  

 

 
Figure 12  Illustrates how one would select a reference file. 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 13 Original file and edited file views given to the user. 
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V. Importer Data Interface 
 
The prior section outlined the first portion (exporting data) of our workflow for interacting with 
Granta. The following will describe the specific function calls needed to allow the import of 
simulation results back into Granta. This API has been written in Python to allow for use in many 
scientifically inclined programming languages. Given Python’s open sourced nature and its 
popularity in scientific computing, the constructed API may be used in many workflows that 
employ other languages as the basis to their engine. So, despite these simulations being run in 
MATLAB, it is reiterated that the API calls can be used with any language compatible with 
Python. 
  

Table 2a  API functions for the user (a) and developer (b) 
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Table 2b API functions for the developer 

 
 
 To start, Table 2 outlines the functions available to a user. The functions have subsequently been 
split into frontend (a) and backend (b). While both are available to an end user, the objective for 
creating the additional frontend functions was so that a given user need not remember the specifics 
of the specific Granta MI schema but rather focus on what specific data they want to import. These 
sets of functions will be used throughout the following example to illustrate how a user might run 
a Monte Carlo simulation and import the simulation results back into Granta. This simulation will 
create 5 composite materials and import the relevant data after changing the repeated unit cell 
(RUC) analysis portion of the MAC/GMC input deck. Figure 14 shows the two files (i.e., original 
and edited) that utilized/produced in the previous step (exporting). The relevant lines associated 
with the *RUC section of the input deck of interest (see Figure 14) will be replaced with the lines 
in the files named RUC1.txt, RUC2.txt, etc., respectively to define the five necessary MAC/GMC 
input decks.  
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Figure 14 The original (RefFile) and edited (RefFile(edit)) files used by workflow engine (MATLAB 

script)  
 
    The example code shown in Figure 15 shows the beginning of our MATLAB script where we 
define the file of interest (RefFile(edit).mac). Here we will make our first call to the developed 
API. This call allows us to connect to the MI server and gain access to the Granta database. In 
addition, the tree structure (e.g., folder) that will hold the resulting simulation results (each run 
comprising a single record within the database) is specified according to the imposed database 
schema. Next, input decks describing five different random composite microstructures are 
sequentially created (via the workflow defined by the MATLAB script) by adjusting the RUC 
slightly using the RUC1.txt, RUC2.txt, etc. files. Boiler plate information indicating who, what, 
and why the analysis run is being conducted is imported within the given simulation record. This 
is outlined in Figure 16 which shows the relevant lines in the MATLAB script and the resulting 
data inside Granta MI. Finally, the simulations results, e.g., effective property data and stress-
strain curves, are imported as shown in Figure 17, along with the model or simulation pedigree 
information such as the associated input and output mac files and links to the original material 
used to create the composite. By creating multiple virtual composites, it is possible to use Granta 
MI to make comparisons between multiple composites, as shown in Figure 18. Similarly, we can 
also run simulations to look at other composite features such as volume fraction instead of 
microstructure, see Figure 20 wherein results for a SCS-6/Ti-21S composite system are given. 
Thus, any composite material simulation workflow can now be created and executed so that the 
complete digital thread (including input, output, full traceability of both constituent and 
composite material behavior, software version, etc.) is captured.  
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Figure 15 Beginning of the MATLAB script where a connection to Granta’s server is made. 

 
 
 
 

 
 

Figure 16 Boiler plate information that is contained in each simulation record. 
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Figure 17  Illustrates model pedigree and composite results that can be included in simulation 
record  

 

 
Figure 18 Comparison of five 60% volume fraction, Graphite/Epoxy, transverse stress-strain curves 

with varying microstructure.  
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Figure 19 Comparison chart of fiber volume fraction effect for SCS-6/Ti-21S composite system 
 

VI. Conclusions 
As models become more accurate, their complexity tends to increase, as they rely less and less 

on simplifying assumptions. This complexity drives the need for more data to be measured, 
simulated, compared, stored, and tracked. The goal of ICME, to link mechanisms and models at 
multiple scales, drives these same needs and underscores the value of and need for a robust 
information management system. Often overlooked as a “mere database,” this information 
management system should be viewed as a “necessary” or an “enabling” infrastructural aspect to 
ICME. In this paper, we have taken the next step in implementing a robust information management 
system by developing and demonstrating the usefulness of Python based API interface that enables 
linkage of third party model simulation software (with full model pedigree storage) to such an 
information management system (Granta MI) at two levels of scale. Such linkage opens up the 
design space and enables seamless and rapid connection of experimental data with virtual 
(simulation) data at various levels of scale, thereby enabling fit for purpose material tailoring. 
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